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HABs and EPA

Computational Ecology & Open Science: 
Tools to Help Manage Cyanobacteria in Lakes

Betty J. Kreakie, Jeffrey W. Hollister, Farnaz Nojavan, W. Bryan Milstead, and Lahne Mattas-Curry

We are a small group of 
computational ecologists tucked 
away in the U.S. EPA’s Office 

of Research and Development lab on the 
coast of Narragansett Bay, Rhode Island. 
Over the last several years, we have been 
using advanced computational ecology 
methods and the tenets of open science 
to attempt to predict the probability of 
cyanobacteria blooms and provide access 
to the tools and data we develop for others 
to build upon. While it may be clear to us, 
who spend several hours a day behind a 
computer screen thinking about computer 
code and calculating uncertainty, that 
this work is important, most people do 
not know what computational ecology 
is. In addition, they don’t understand 
how computational ecology can be used 
to establish an adequate understanding 
of the inherent ecosystem uncertainty 
that might help us better manage lakes 
to reduce cyanobacteria bloom risk. The 
purpose of this article is to introduce the 
concepts of computational ecology and 
open science and describe why we think 
they will advance our understanding of 
cyanobacteria blooms and help us make 
better predictions.

What is Computational Ecology?
	 Computational ecology is an 
interdisciplinary field that takes advantage 
of modern computation abilities to 
expand our ecological understanding. As 
computational ecologists, we combine 
data sets and advanced statistical/
mathematical computational methods 
to build models that often cover broad 
spatial extents. This field is also 
fully entrenched in an ethos of open 
science and scientific reproducibility. 
Computational ecologists must have 
diverse skills as we are required to 

master data management and curation, 
coding, data analysis, and visualization, 
in addition to our ecological expertise. 
Essentially, we use big computers and big 
data to move ecological understanding 
forward. 
	 The computational ecologist’s 
toolbox works well for exploring the 
complexity of cyanobacteria-related 
questions. All areas of ecology are 
complex, but this complexity increases 
when dealing with the cyanobacteria 
phylum. This phylum has high species 
diversity and yet the individuals are small 
in physical size. If you want to study 
polar bears, it’s fairly straightforward; 
you count polar bears. If you want to 
study cyanobacteria, what do you count? 
How do you count? It’s not that these 
questions don’t have answers, it’s that 
most cyanobacteria experts answer the 
questions in different ways. This results in 
substantial data uncertainty. Each method 
used to measure cyanobacteria has its pros 
and cons. This, of course, means that the 
models from different data sources have to 
be interpreted according to the limitations 
of the cyanobacteria data. And we haven’t 
even talked about the complexity involved 
in measuring environmental response 
variables and if those variables are 
ecologically meaningful to cyanobacteria. 
	 Given the complexity and size of 
the data we must look outside traditional 
statistical methods to analyze our data. 
One of our favorite computational 
methods is “random forest,” which we use 
frequently to build classifier models. This 
method is a machine learning approach 
that allows us to make robust predictions 
from large amounts of data with multiple 
data types. The random forest algorithm 
partitions the data into training and test 
data sets. Then the data are hierarchically 

partitioned into increasingly more 
homogenous groups based on a subset 
of the environmental variables. The test 
data set is then used to measure how well 
we did. This process is repeated multiple 
times to ensure that we have captured the 
true signal of the data. 
	 For our most recent work, we 
used the U.S. EPA’s National Lake 
Assessment (NLA) data from 2007 
to build random forest models of lake 
trophic status. The NLA is a probabilistic 
sampling of 1,000+ lakes across all 
eco-regions in the continental US 
(Figure 1). Lake trophic status was 
used as a proxy for cyanobacteria 
abundance. We can do this because we 
know that cyanobacteria abundance and 
chlorophyll-a concentrations (which are 
used to classify lake trophic status) are 
positively correlated. In other words, the 
amount of cyanobacteria in a lake tends 
to increase as the amount of chlorophyll-a 
increases. There are several advantages 
to using lake trophic status as a proxy for 
cyanobacteria. By using chlorophyll-a 
concentration based trophic status, we 
are not constricted by one measure of 
cyanobacteria. While at the same time, 
we are using a unit that has real world 
meaning to lake managers. These broad 
trophic state classifications are good 
predictors of ecosystem health, which 
directly relates to ecosystem services/
disservices (e.g., potential for recreation, 
good aesthetics, and fisheries). 
	 The gold standard for understanding 
cyanobacteria in lakes is direct 
measurements of water quality variables, 
such as levels of nutrients, chlorophyll-a, 
and pigments. This requires the ability to 
take on site (“in situ”) samples; something 
that cannot realistically be done for every 
lake in the country. Our modeling work 
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Figure 1: Map of the 2007 National Lake Assessment survey locations. Points are color-coded 
according to lake trophic status. 

is focused on predicting cyanobacteria 
bloom risk for lakes that have not been 
directly sampled. Empirical data from 
lakes are combined with remote sensing 
and geographic information systems (GIS) 
data to model bloom risk; results from this 
work can then be extrapolated to all lakes 
in the continental United States. The work 
is starting to shed some light on landscape 
factors that may contribute to elevated 
bloom risk (Figure 2). For example, we 
know that different regions of the United 
States have different probabilities of 
bloom occurrences. We are also learning 
how lake morphometry, as well as the 
surrounding land use, impact lake trophic 
status.
	 As our work progresses, we are 
increasing the complexity of our modeling 
efforts by developing a Bayesian 
multilevel model. This approach offers 
numerous exciting advancements for 
cyanobacteria predictions. First, we are 
moving from using lake trophic status 
as a proxy for cyanobacteria to directly 
modeling microcystin, a common 
cyanobacteria hepatotoxin. We used 
the results of random forest modeling 
to select variables for inclusion in a 
Bayesian multilevel model of microcystin 
concentrations (Figure 3). Bayesian 
statistical methods start with prior beliefs 
and combines these with new information 
from the experiment, represented by 

Figure 2: Plot of ranked mean decreased Gini from the random forest model predicting three 
levels of lake trophic status. This model’s predictions were based solely on GIS-derived variables. 
Essentially, this figure illustrates the order of variable importance in development of the model. 
The most important variables are longitude and latitude, which would lead us to conclude that 
there is a spatial gradient across the U.S. We also can conclude that there is a gradient along 
elevations, because elevation is the third-most important variable. 
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the likelihood function, to form the 
posterior beliefs for the model parameters 
(Hoff 2009). Model parameters under a 
multilevel modeling framework are eco-
region specific, but they are also assumed 
to be exchangeable across eco-regions 
for broad continental scaling (Gelman 
and Hill 2006; Qian et al. 2010). The 
exchangeability assumption ensures that 
both the common patterns and eco-
region specific features will be reflected 
in the model. Furthermore, the method 
incorporates appropriate uncertainty 
estimates. This modeling approach has 
the added benefit of allowing us to update 
our assumptions when we have new data. 
And since the NLA is repeated every five 
years, we will be able to improve our base 
knowledge once the newest NLA data are 
released publically.
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What is Open Science?
	 All of this modelling would be 
impossible without open access to 
modern computational methods and the 
data that support our models. Broadly 
speaking, this is often referred to as “open 
science.” This broad area has been defined 
as having several components. These 
components suggest that “open science”:

•	 is transparent (and, of course, open)

•	 includes all parts of research (data, 
code, etc.)

•	 allows others to repeat the work

•	 should be posted on an open and 
accessible website (while protecting 
personally identifiable information, 
etc.)

•	 occurs along a gradient (i.e., not just 
a binary open vs. not open)

	 At the EPA, we are learning how to 
make our research on cyanobacteria and 
human health meet these criteria.  We are 
implementing open science in three ways: 
(1) making our work available via open 
access publishing; (2) providing access 
to the code used in our analysis; and (3) 
making our data publically available. 
The goal of these efforts is to increase 
the reproducibility of our work, reach 
broader audiences, and eventually have a 
greater impact on society’s understanding 
and management of harmful algal blooms 
(HABs). Specifically, we are using the 
following open science channels to benefit 
the management of harmful algal blooms:

Open access publications: Our traditional 
venue for sharing research is peer-

Figure 3: Structure of the Multilevel Model: The U.S. continental, highest level, is divided into nine eco-regions. The eco-regions are divided into 
individual lakes (1148), lowest level.

reviewed publications. A problem with 
many journals is that these articles are 
only accessible to those who have paid 
to gain access. An increasingly common 
option is to publish in open access 
journals or to pay additional fees to 
make sure a given article is open access. 
Researchers in our group consistently 
use open access venues for our research. 
By taking this step we are able to reach a 
much broader audience with our work. 

Open source software: As computational 
ecologists we rely on scientific software 
to conduct our work. A very important 
part of using this software is to be able 
to check that the methods encoded in this 
software are valid. The only way to do 
this is to use software that is open source 
(i.e., the code is available to review, 
enhance, or modify). Not only do we 
use open source software such as the 
R Language for Statistical Computing 
(http://www.R-project.org/), we also 
contribute back to the open source 
community. Members of our group have 
developed software to support modelling 
of lakes (e.g., lakemorpho package 
[http://cran.r-project.org/web/packages/
lakemorpho/index.html]) and we actively 
use the U.S. EPA’s organizational account 
on Github (https://github.com/USEPA) 
for collaborating on code development 
and sharing other aspects of our work. 
By providing open access to our 
computational methods we allow others to 
repeat the same analyses or build from it.

Open data: The last area where we are 
just now starting to work is providing 
access to our data. As mentioned, we 

strive to publish our work as open access 
and along with those publications, we 
have, when possible, made the datasets 
that support that work available via 
supplemental materials. More recently we 
have released a first version of a national 
lake morphometry dataset. Those data 
are available, as GIS files, from https://
edg.epa.gov/clipship/ under the heading, 
“National Lake Morphometry.” We plan 
to continue improving this dataset. 

Going Forward
	 We have been using computational 
ecology and open science in our HABs 
related research for several years now 
and have many plans going forward. 
First, we are expanding our modelling 
efforts to include new methods and 
endpoints. We hope to work with 
managers to identify what qualities of 
freshwater HABs are most important to 
predict. Second, new data are always 
becoming available that can inform our 
work. For instance, the 2012 National 
Lakes Assessment data (http://water.
epa.gov/type/lakes/lakessurvey_index.
cfm) should be available in the very near 
future, citizen science efforts such as 
those done by Rhode Island’s Watershed 
Watch program have a rich trove of data 
that can help us better model HABs, 
and new cyanobacteria monitoring 
programs are starting to come on-line (see 
“New England Region Cyanobacteria 
Monitoring Program” in this issue). All 
of these will provide a fresh look at the 
HAB problem. In addition to these data 
sets, we are planning the development 
of a national lake database. Our lake 
morphometry data are the first step but we 
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envision a database with multiple sources 
of water quality data, a mechanism for 
updating the data and access provided in 
a variety of ways for a variety of users. In 
short, understanding the dynamics of lake 
trophic status and cyanobacteria bloom 
risk is an increasing concern for lake 
resource managers. The computational 
approaches we describe here, as well as 
conducting research via the tenets of open 
science, will allow us to make significant 
advances in cyanobacteria ecology and 
other related fields.
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(GILINSKY . . . Contintued from page 12) 

	 Providing clean and safe water for 
healthy, thriving communities will require 
new solutions. Shifting rain patterns and 
seasonal temperatures across the country, 
in combination with increasing nutrient 
pollution, can lead to increases in harmful 
algal blooms. The science on harmful 
algal blooms is evolving and so are our 
solutions. Continued monitoring and 
treatment, and investment in our nation’s 
water infrastructure, are necessary to 
prevent more blooms in the future. 
	 I am encouraged by all of the great 
efforts going on at EPA and with our 
federal and state partners. When we 
all work together, we can adapt to new 
circumstances and protect our most 
precious resource for our children and our 
communities. 
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